## LATERAL SPREADING EFFECTS ON PILE FOUNDATIONS DUE TO SOIL LIQUEFACTION

Ricardo Dobry
TRB Annual Meeting, January 14, 1997

## SELECTED REFERENCES

Benuzka, L., editor (1990), "Loma Prieta earthquake reconnaissance report," report by EERI and NRC, Supplement to Vol. 6 of Earthquake Spectra, May.

Dobry, R. (1994), "Foundation deformation due to earthquakes," Proc. ASCE SETTLEMENT '94, Geotechnical Special Publication No. 40, ASCE, NY, USA, Vol. 1. pp. 1846-1863.

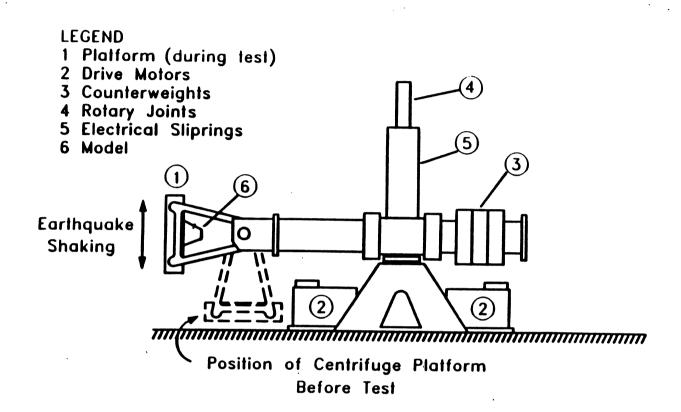
Dobry, R., V. Taboada and L. Liu (1995), "Centrifuge modeling of liquefaction effects during earthquakes," Keynote Lecture, Proc. First Int. Conference on Earthquake Geotechnical Engineering, Tokyo, Japan, Nov. 14-16, Preprint Volume, pp. 129-162.

Dobry, R., T. Abdoun and T. D. O'Rourke (1996), "Evaluation of pile response due to liquefaction-induced lateral spreading of the ground," Proc. Fourth CALTRANS Seismic Research Workshop, Sacramento, California, USA, July 9-11.

Hamada, M. and T. D. O'Rourke, editors (1992), "Case studies of liquefaction and lifeline performance during past earthquakes, Vol. 1: Japanese case studies," Tech. Rept. NCEER-92-0001, February, NCEER, SUNY-Buffalo, Buffalo, NY, USA.

Soils and Foundations (1996), "Special issue on geotechnical aspects of the January 17 1995 Hyogoken-Nambu earthquake," published by the Japanese Geotechnical Society, January. See especially papers by:

Hamada, Isoyama and Wakamatsu, pp. 81-98 Ishihara, Yasuda and Nagase, pp. 109-118 Inagaki, Iai, Sugano, Yamazaki and Inatomi, pp. 119-136 Matsui and Oda, pp. 189-200 Tokimatsu, Mizuno and Kakurai, pp. 219-234


Youd, T. L. (1993), "Liquefaction-induced damage to bridges," Transportation Research Record, published by the Transportation Research Board and the National Research Council, Washington, D.C., USA,  $N_{\rm O}$ . 1411, pp. 35-41.

## SOME EARTHQUAKES WHERE DEEP FOUNDATIONS HAVE BEEN DAMAGED BY LATERAL SPREADING

| YEAR | EARTHQUAKE          | COUNTRY     |
|------|---------------------|-------------|
| 1906 | San Francisco       | USA         |
| 1964 | Niigata             | Japan       |
| 1964 | Alaska              | USA         |
| 1976 | Tangshan            | China       |
| 1983 | Nihonkai-Chubu      | Japan       |
| 1985 | Chile               | Chile       |
| 1989 | Loma Prieta         | USA         |
| 1990 | Luzon               | Philippines |
| 1991 | Limon               | Costa Rica  |
| 1993 | Hokkaido-Nansei-Oki | Japan       |
| 1995 | Hyoken-Nambu (Kobe) | Japan       |
| 1995 | Manzanillo          | Mexico      |

## **CONCLUSIONS**

- Liquefaction-induced lateral spreading is important cause of damage to pile foundations
- Main damage locations:
  - pile top
  - boundaries between liquefied and nonliquefied soil layers
- Permanent horizontal surface ground displacement in free field near pile is main parameter determining damaging bending moments
- Other important parameters are:
  - pile bending stiffness and strength
  - pile cap/connections stiffness and strength
  - nonliquefied layers stiffness and strength
  - depth, thickness of liquefied layer
  - properties of liquefied soil (in some cases)
- Centrifuge model test results can be used to:
  - evaluate specific case histories or design situations
  - calibrate computer programs (B-STRUCT)



RPI Geotechnical Centrifuge